DECOMPOSITION OF INJECTIVE MODULES RELATIVE TO A TORSION THEORY

BY

JOSÉ L. BUESO, PASCUAL JARA AND BLAS TORRECILLAS

Departamento de Algebra y Fundamentos, Facultad de Ciencias,

Universidad de Granada, 18071 Granada, Spain

ABSTRACT

If R is a right noetherian ring, the decomposition of an injective module, as a direct sum of uniform submodules, is well known. Also, this property characterises this kind of ring. M. L. Teply obtains this result for torsion-free injective modules. The decomposition of injective modules relative to a torsion theory has been studied by S. Mohamed, S. Singh, K. Masaike and T. Horigone. In this paper our aim is to determine those rings satisfying that every torsion-free τ -injective module is a direct sum of τ -uniform τ -injective submodules and also to determine those rings with the same property for every τ -injective module.

1. Preliminaries

All rings considered have non-zero identity elements, are associative, but not necessarily commutative. All modules are unitary and are right modules over the ring.

Let R be a ring. Let Mod-R denote the category of right R-modules. The pair $\tau = (\mathcal{T}, \mathcal{F})$ will always denote a hereditary torsion theory on Mod-R and \mathcal{L} will be its associated Gabriel filter. Denote by t(M) the largest τ -torsion submodule of a module M. t is the associated torsion radical of the torsion theory τ .

If M is a module and $N \leq M$ a submodule, then

$$\operatorname{Cl}_{\tau}^{M}(N) = \{x \in M \mid (N : x) \in \mathcal{L}\}\$$

will be the τ -closure of N in M.

A submodule N of M is τ -dense (resp. τ -closed) in M if $\operatorname{Cl}_{\tau}^{M}(N) = M$ (resp. $\operatorname{Cl}_{\tau}^{M}(N) = N$).

Let $\mathscr{C}_{\tau}(M)$ denote the complete modular lattice of all τ -closed submodules of M. The following lemma is well known.

Received July 15, 1984 and in revised form January 29, 1985

LEMMA 1.1. Let M be a module and $N \leq M$ a submodule. If $\mathscr{C}_{\tau}(M)$ is a complemented lattice, then $\mathscr{C}_{\tau}(N)$ and $\mathscr{C}_{\tau}(M/N)$ are complemented.

A module M is τ -simple if $\mathcal{C}_{\tau}(M) = \{t(M), M\}$ and it is not τ -torsion. It is called τ -critical if it is τ -simple and τ -torsion-free.

A submodule N of M is τ -essential in M if N is essential in M and M/N is τ -torsion.

A non-zero module M is τ -uniform if for every non-zero submodule N, N is τ -essential in M.

LEMMA 1.2. A module M is τ -uniform if and only if M is either τ -critical or τ -torsion and uniform.

A module M is τ -injective if for every right ideal I of the filter \mathcal{L} , the natural group homomorphism $\operatorname{Hom}_R(R,M) \to \operatorname{Hom}_R(I,M)$ is surjective. M is τ -injective if and only if M has not proper τ -essential extensions. For every module M there is a τ -essential extension $E_{\tau}(M)$ of M which is τ -injective, the τ -injective hull of M. This is unique up to isomorphism.

Denote by

$$T_{\tau}: \operatorname{Mod-}R \to (\operatorname{Mod-}R)/\mathcal{T}$$

the canonical quotient functor, and by

$$S_{\tau}: (\operatorname{Mod-}R)/\mathcal{T} \to \operatorname{Mod-}R$$

its right adjoint functor. As is well known T_{τ} is exact, and of course S_{τ} is left exact. Write $Q_{\tau} = S_{\tau}T_{\tau}$ and

$$\psi: 1 \Rightarrow O_{\tau} = S_{\tau}T_{\tau}$$

for the unit of the adjunction. $Q_{\tau}(R)$ is a ring and $\psi(R)$ is a ring homomorphism.

Năstăsescu shows, in [9], that $\mathscr{C}_{\tau}(M)$ satisfies the ascending chain condition if and only if $T_{\tau}(M)$ is a noetherian object in $(\text{Mod-}R)/\mathscr{T}$.

For additional information on torsion theories, the reader is referred to [3] and [10].

2. τ -Semiartinian modules

Let M be a module. We define the τ -socle, $\operatorname{Soc}_{\tau}(M)$, of M as the τ -closure of the sum of all τ -simple submodules of M. A module M is called τ -semicritical if $\operatorname{Soc}_{\tau}(M) = M$ and τ -semiartinian if every non-zero quotient module of M has non-zero τ -socle. The ring R is called τ -semicritical (resp. τ -semiartinian) if the

right module R_R is τ -semicritical (resp. τ -semiartinian). R is τ -semiartinian if and only if $Soc_{\tau}(M)$ is essential in M for every module M.

LEMMA 2.1. The following statements are equivalent for every module M:

- (a) M is τ -semicritical.
- (b) $\mathscr{C}_{\tau}(M)$ is a complemented lattice and every τ -closed non- τ -torsion submodule of M contains a τ -simple submodule.
- (c) For every proper τ -closed submodule N of M there is a τ -simple submodule K of M such that $N \cap K = t(K)$.

PROOF. It is similar to [1; Corollary 3.11] using: M is τ -simple if and only if M/t(M) is τ -critical.

LEMMA 2.2. The following conditions are equivalent:

- (a) R is a τ -semicritical ring.
- (b) Every module is τ -semicritical.
- (c) Every τ -torsion-free module is τ -semicritical.
- (d) $(\text{Mod-}R)/\mathcal{T}$ is discrete spectral.

PROOF. (a) \Leftrightarrow (b) \Leftrightarrow (c). They are analogous to [1; Theorem 3.12].

(a) \Leftrightarrow (d). It is obvious.

PROPOSITION 2.3. Let τ be a torsion theory. The following statements are equivalent:

- (a) \mathcal{L} satisfies the ascending chain condition.
- (b) Every τ -torsion τ -injective module is a direct sum of τ -uniform τ -injective submodules.
 - (c) Every direct sum of τ -torsion τ -injective modules is τ -injective.

PROOF. See [8; Theorem 7] or [7; Theorem 1].

The following proposition is a refinement to [7; Theorem 2] by Masaike and Horigone. It will be fundamental in our development. But first, we remember that a noetherian torsion theory, [5; page 28], is a torsion theory such that the associated filter has the property: if $I_1 \le I_2 \le \cdots$ is an ascending chain of right ideals whose union is in \mathcal{L} , then I_n is in \mathcal{L} for some n.

PROPOSITION 2.4. Let τ be a noetherian torsion theory. The following conditions are equivalent:

- (a) $\mathcal L$ satisfies the ascending chain condition and R is τ -semiartinian.
- (b) Every τ -injective module is an essential extension of a τ -injective submodule which is a direct sum of τ -uniform τ -injective submodules.

PROOF. (a) \Rightarrow (b). Let M be a τ -injective module. Since t(M) is τ -closed in M, then t(M) is τ -injective. Then t(M) is a direct sum of τ -uniform τ -injective submodules by Proposition 2.3. We may assume that t(M) is not an essential submodule of M. Let N be the complement of t(M) in M. Since N has non-essential extensions in M, N is τ -injective. In view of [1; Corollary 3.2], it is possible to obtain a family of τ -uniform τ -injective submodules $\{N_{\alpha} \mid \alpha \in \Lambda\}$ of N such that $\operatorname{Soc}_{\tau}(N) = \operatorname{Cl}_{\tau}^{M}(\bigoplus \{N_{\alpha} \mid \alpha \in \Lambda\})$. Since R is τ -semiartinian then $\operatorname{Soc}_{\tau}(N)$ is essential in N. On the other hand, since τ is a noetherian torsion theory, [3; Proposition 14.4], then $\bigoplus \{N_{\alpha} \mid \alpha \in \Lambda\}$ is τ -injective and so $(\bigoplus \{N_{\alpha} \mid \alpha \in \Lambda\}) \bigoplus t(M)$ is the desired submodule of M.

(b) \Rightarrow (a). Since every τ -uniform τ -torsion-free τ -injective module is τ -critical, then every τ -injective module has essential τ -socle, so every module has an essential τ -socle and thus R is τ -semiartinian. If M is τ -torsion τ -injective, then there is an essential τ -injective submodule N of M, which is a direct sum of τ -uniform τ -injective submodules; since every submodule of M is τ -dense then N=M; and by Proposition 2.3, $\mathcal L$ satisfies the ascending chain condition.

3. The main results

LEMMA 3.1. The following statements are equivalent:

- (a) $\mathscr{C}_{\tau}(M)$ is complemented for every τ -torsion-free module M.
- (b) The essential submodules of every τ -torsion-free module are τ -dense.
- (c) $\mathscr{C}_{\tau}(M)$ is the set of all the complement submodules of M for every τ -torsion-free module M.
 - (d) Every τ -torsion-free τ -injective module is injective.
 - (e) $\mathscr{C}_{\tau}(R)$ is complemented.
 - (f) $(\text{Mod-}R)/\mathcal{T}$ is spectral.

PROOF. (a) \Leftrightarrow (b) \Leftrightarrow (c). They are well known.

- (a) \Rightarrow (e). It is obvious.
- (e) \Rightarrow (d). Every module M is isomorphic to a quotient of a free module $R^{(\Gamma)}$ for some index set Γ . Then, by Lemma 1.1, it is sufficient to prove that $\mathscr{C}_{\tau}(R^{(\Gamma)})$ is complemented for any index set Γ . If M is a τ -torsion-free module such that $\mathscr{C}_{\tau}(M)$ is complemented, then $\mathscr{C}_{\tau}(M^{(\Gamma)})$ is complemented from [4; Proposition 1.2]. Since $\mathscr{C}_{\tau}(M)$ is isomorphic to $\mathscr{C}_{\tau}(M/t(M))$, then this result is immediate for non-necessarily τ -torsion-free modules.
- (b) \Rightarrow (d). Let M be a τ -torsion-free τ -injective module and E(M) its injective hull; since M is essential in E(M) and E(M) is τ -torsion-free then M = E(M) is injective.

- (d) \Rightarrow (a). Since $\mathscr{C}_{\tau}(M)$ is a lattice isomorphic to $\mathscr{C}_{\tau}(E_{\tau}(M))$, we only have to show that $\mathscr{C}_{\tau}(E_{\tau}(M))$ is complemented, but this is clear.
 - $(d) \Rightarrow (f)$. It is obvious.

A torsion theory τ is called of finite type if the filter has a cofinal subset of finitely generated right ideals [3; page 141]. If furthermore the functor Q_{τ} is exact the torsion theory will be called perfect [3; page 156].

THEOREM 3.2. The following conditions are equivalent for a ring R:

- (a) Every τ -torsion-free τ -injective module is a direct sum of τ -uniform τ -injective submodules.
 - (b) $\mathscr{C}_{\tau}(R)$ satisfies the ascending chain condition and R is τ -semicritical.
 - (c) $\mathscr{C}_{\tau}(R)$ satisfies the ascending chain condition and is complemented.
 - (d) $\mathscr{C}_{\tau}(R)$ satisfies the descending chain condition and is complemented.
- (e) $\mathscr{C}_{\tau}(R)$ satisfies the ascending chain condition and every τ -torsion-free τ -injective module is injective.
 - (f) $Q_{\tau}(R)$ is semisimple artinian.
 - (g) τ is of finite type and $\mathscr{C}_{\tau}(R)$ is complemented.
 - (h) τ is perfect and $\mathscr{C}_{\tau}(R)$ is complemented.
 - (i) $(\text{Mod-}R)/\mathcal{T}$ is discrete spectral and $T_{\tau}(R)$ is a noetherian object.
- PROOF. (a) \Rightarrow (b). By hypothesis, every τ -torsion-free τ -injective module is τ -semicritical, then, by Lemmas 2.2 and 2.1, R is τ -semicritical and $\mathscr{C}_{\tau}(R)$ is complemented. Since every τ -torsion-free τ -injective module is injective by Lemma 3.1, so $\mathscr{C}_{\tau}(R)$ satisfies the ascending chain condition because of [11; Theorem 1.2].
- (b) \Rightarrow (a). If R is τ -semicritical, then every τ -torsion-free τ -injective module is injective by Lemmas 2.1, 2.2 and 3.1. Let E be a τ -torsion-free τ -injective module, by [11; Theorem 1.2] we have $E = \bigoplus \{E_{\alpha} \mid \alpha \in \Lambda\}$, where E_{α} is a uniform injective submodule of E for every $\alpha \in \Lambda$. Since R is τ -semicritical, then E_{α} is τ -semicritical. There is a τ -critical submodule N of E_{α} by Lemma 2.1, then since E_{α} is uniform we have that N is essential in E_{α} and so N is τ -dense in E_{α} by Lemma 3.1. As a consequence E_{α} is τ -uniform τ -injective.
 - (c) \Leftrightarrow (d). See [10; Exercise III.9].
 - (c)⇔(e). It is a consequence of Lemma 3.1.
- (c) \Rightarrow (b). By Lemmas 2.1, 2.2 and 3.1 we must only prove that if N is a non-zero τ -closed submodule of a τ -torsion-free module M, then N contains a τ -critical submodule. If N is uniform then N is τ -critical, because $\mathscr{C}_{\tau}(N)$ is complemented by Lemma 1.1. Assume N does not contain uniform submodules, there are two non-zero submodules N_1, N_1' of N such that $N_1 \cap N_1' = 0$. None of

them is uniform, hence N'_1 contains again two non-zero submodules N_2 , N'_2 such that $N_2 \cap N'_2 = 0$. In this way we obtain a proper ascending chain of direct sums

$$N_1 < N_1 \oplus N_2 < N_1 \oplus N_2 \oplus N_3 < \cdots$$

It is clear that

$$Cl_{\tau}^{M}(N_{1}) < Cl_{\tau}^{M}(N_{1} \oplus N_{2}) < Cl_{\tau}^{M}(N_{1} \oplus N_{2} \oplus N_{3}) < \cdots$$

is a proper ascending chain of τ -closed submodules, which is a contradiction.

- (b) \Rightarrow (c). It is immediate by Lemmas 2.1 and 2.2.
- (e) \Leftrightarrow (f) \Leftrightarrow (g) \Leftrightarrow (h). After Lemmas 2.1 and 3.1, they are proved in [12; Theorem 2.1].
 - (b)⇔(i). It is clear.

THEOREM 3.3. The following statements are equivalent for a ring R:

- (a) Every τ -injective module is a direct sum of τ -uniform τ -injective submodules.
 - (b) R is right noetherian, τ -semicritical and τ is stable.
- (c) $Q_{\tau}(R)$ is semisimple artinian, \mathcal{L} satisfies the ascending chain condition and τ is stable.

PROOF. (a) \Rightarrow (b). Since every injective module is τ -injective, then every injective module is a direct sum of uniform injective submodules and so R is noetherian. On the other hand, since every τ -injective module is a direct sum of τ -uniform τ -injective submodules, then they are τ -semicritical and so R is τ -semicritical. Finally τ is stable as a consequence of [4; Proposition 11.3].

- (b) \Rightarrow (c). It is obvious by Theorem 3.2.
- (c) \Rightarrow (a). By Theorem 3.2 $\mathscr{C}_{\tau}(R)$ satisfies the ascending chain condition, then τ is noetherian [3; Proposition 14.10], and by Proposition 2.4 every τ -injective module E is an essential extension of a τ -injective submodule $\bigoplus \{E_{\alpha} \mid \alpha \in \Lambda\}$, where the E_{α} are τ -uniform τ -injective submodules of E. We define $\Lambda' = \{\alpha \in \Lambda \mid E_{\alpha} \text{ is } \tau\text{-torsion}\}$, then $\alpha \in \Lambda \setminus \Lambda'$ if and only if E_{α} is τ -torsion-free. It is clear that $K = \bigoplus \{E_{\alpha} \mid \alpha \in \Lambda'\}$ is essential in t(E). Since K is τ -injective and τ -dense in t(E), then K = t(E). Since τ is stable, then $H = ((\bigoplus \{E_{\alpha} \mid \alpha \in \Lambda \setminus \Lambda') \bigoplus t(E))/t(E)$ is essential in E/t(E). Since $\mathscr{C}_{\tau}(R)$ is complemented and E/t(E) is τ -torsion-free, then H is a τ -essential submodule of E/t(E) by Lemma 3.1. H is also τ -injective so it is equal to E/t(E). Thus

$$E = \bigoplus \{E_{\alpha} \mid \alpha \in \Lambda \setminus \Lambda'\} \oplus t(E) = \bigoplus \{E_{\alpha} \mid \alpha \in \Lambda\}.$$

REMARK. The following examples show that (c) does not imply (b) without

the condition of stability over τ and that there is a right noetherian and τ -semicritical ring such that τ is not stable.

EXAMPLE 1. Let R be the ring of all 2×2 lower triangular matrices $\begin{bmatrix} z & 0 \\ O & O \end{bmatrix}$, where Z is the ring of integers and Q the field of rationals, with the usual addition and multiplication of matrices and let \mathcal{F} be the torsion class consisting of all right modules annihilated by $e_{22}R$, where e_{22} denote the matrix with 1 at the 2,2nd entry and 0 elsewhere. τ is not stable. It is clear that R is τ -semicritical and non-noetherian but $Q_{\tau}(R)$ is semisimple artinian and \mathcal{L} satisfies the ascending chain condition.

EXAMPLE 2. Let R be the ring of all 2×2 lower triangular matrices $\begin{bmatrix} F & 0 \\ F & F \end{bmatrix}$, where F is a field, with the usual addition and multiplication of matrices and let \mathcal{T} be the torsion class consisting of all right modules annihilated by $e_{22}R$. τ is not stable and R is noetherian and τ -semicritical but the τ -injective module

$$M = \left[\begin{array}{cc} 0 & 0 \\ F & F \end{array} \right]$$

is not a direct sum of τ -uniform τ -injective submodules.

It has been pointed out by the referee that part of Lemma 3.1 is contained in [6].

REFERENCES

- 1. J. L. Bueso and P. Jara, A generalization of semisimple modules, in Methods in Ring Theory, Antwerp 1983, Reidel Publ. Co., Dordrecht, 1984, pp. 53-65.
- 2. J. S. Golan, *Decomposition and dimension in modules categories*, Lecture Notes in Pure and Applied Mathematics 33, Marcel Dekker, New York, 1977.
- 3. J. L. Golan, Localization of non-commutative rings, Monographs and Textbooks in Pure and Applied Mathematics 30, Marcel Dekker, New York, 1975.
- 4. J. S. Golan, On the endomorphism ring of a module noetherian with respect to a torsion theory, Isr. J. Math. 45 (1983), 257-264.
 - 5. O. Goldman, Rings and modules of quotients, J. Algebra 13 (1969), 10-47.
 - 6. G. Helzer, On divisibility and injectivity, Can. J. Math. 18 (1966), 901-919.
- 7. K. Masaike and T. Horigone, Direct sum of τ -injective modules, Tsukuba J. Math. 4 (1980), 77-81.
- 8. S. Mohamed and S. Singh, *Decomposition of \sigma-injective modules*, Comm. in Algebra 9 (1981), 601-611.
- 9. C. Năstăsescu, La structure des modules par rapport à une topologie additive, Tohôku Math. J. 26 (1974), 173-201.
- 10. B. Stenström, Rings of quotients, in Die Grundlehren der Math. Wissen. in Einzeldarstellungen 217. Springer-Verlag, Berlin, 1975.
 - 11. M. L. Teply, Torsionfree injective modules, Pacific J. Math. 28 (1969), 441-453.
 - 12. J. Zelmanowitz, Semisimple rings of quotients, Bull. Austral. Math. Soc. 19 (1978), 97-115.